Control by Fur of the nitrate respiration regulators NarP and NarL in Salmonella enterica.

نویسندگان

  • Laura Teixidó
  • Pilar Cortés
  • Anna Bigas
  • Gerard Alvarez
  • Jordi Barbé
  • Susana Campoy
چکیده

Anaerobic metabolism is controlled by several transcriptional regulators, including ArcA, Fnr, NarP, and NarL, with the Fnr and ArcA proteins sensitive to the cell's redox status. Specifically, the two-component ArcAB system is activated in response to the oxidation state of membrane-bound quinones, which are the central electron carriers of respiration. Fnr, by contrast, directly senses cellular oxidation status through the [4Fe-4S] cluster present in its own structure. In this study, a third additional redox-associated pathway that controls the nitrate respiration regulators NarL and NarP was identified. The results showed that, in Salmonella enterica, the expression of these two transcriptional regulators is under the control of Fur, a metalloregulator that senses the presence of Fe2+ and regulates the homeostasis of this cation inside the cell. Thus, the Fur- Fe2+ complex increases the expression of narL and represses that of narP. Furthermore, studies of S. enteric mutants defective in the Fur-regulated sRNA RfrA and RfrB showed that those sRNA control both narP and narL expression. These results confirm Fur as a global regulator based on its involvement not only in iron uptake and detoxification but also in the control of nitrate/nitrite respiration by sensing cellular redox status.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Escherichia coli K-12 NarL and NarP proteins insulate the nrf promoter from the effects of integration host factor.

The Escherichia coli K-12 nrf operon promoter can be activated fully by the FNR protein (regulator of fumarate and nitrate reduction) binding to a site centered at position -41.5. FNR-dependent transcription is suppressed by integration host factor (IHF) binding at position -54, and this suppression is counteracted by binding of the NarL or NarP response regulator at position -74.5. The E. coli...

متن کامل

Fnr, NarP, and NarL regulation of Escherichia coli K-12 napF (periplasmic nitrate reductase) operon transcription in vitro.

The expression of several Escherichia coli operons is activated by the Fnr protein during anaerobic growth and is further controlled in response to nitrate and nitrite by the homologous response regulators, NarL and NarP. Among these operons, the napF operon, encoding a periplasmic nitrate reductase, has unique features with respect to its Fnr-, NarL-, and NarP-dependent regulation. First, the ...

متن کامل

[Comparative genomics analysis of nitrate and nitrite respiration in gamma proteobacteria].

Nitrate and nitrite are preferred respiration oxidants during anaerobic conditions. In Escherichia coli such nitrate- and nitrite respiration is controlled by homologous transcriptional factors NarL and NarP. Although this system was intensively studied during the last two decades, the exact mechanisms of regulation and the structure of the NarL binding signals remained elusive. By the use of c...

متن کامل

Synthetic lac operator substitutions for studying the nitrate- and nitrite-responsive NarX-NarL and NarQ-NarP two-component regulatory systems of Escherichia coli K-12.

The NarX and NarQ sensor-histidine kinases control phosphorylation of the NarL and NarP response regulators in response to the respiratory oxidants nitrate and nitrite. Target operon transcription is activated by the Fnr protein in response to anaerobiosis, and it is further activated and/or repressed by the phospho-NarL and phospho-NarP proteins, which bind to heptamer DNA sequences. The locat...

متن کامل

Functional roles for the GerE-family carboxyl-terminal domains of nitrate response regulators NarL and NarP of Escherichia coli K-12

NarL and NarP are paralogous response regulators that control anaerobic gene expression in response to the favoured electron acceptors nitrate and nitrite. Their DNA-binding carboxyl termini are in the widespread GerE-LuxR-FixJ subfamily of tetrahelical helix-turn-helix domains. Previous biochemical and crystallographic studies with NarL suggest that dimerization and DNA binding by the carboxyl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International microbiology : the official journal of the Spanish Society for Microbiology

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2010